Specification of Thermoelectric Module

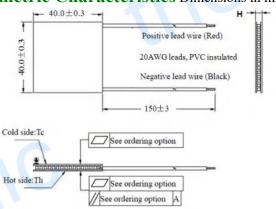
TEC1-16104

Description

The 161 couples, 40 mm × 40 mm size module which is made of selected high performance ingot to achieve superior cooling performance and greater delta T up to 70 °C, designed for superior cooling and heating up to 100 °C applications. If higher operation or processing temperature is required, please specify, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th(°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the	
			module when cooling capacity is zero at cold side	
U _{max} (Voltage)	20.2	21.8	Voltage applied to the module at DT _{max}	
I _{max(} amps)	4.8	4.8	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	60.9	66.6	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance(ohms)	3.3	3.55	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Ordering Option

Manufacturing Options

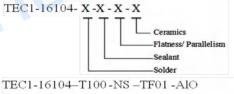
A. Solder:	B. Sealant:

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217° C) 2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C) 3. EPS: Epoxy sealant

C. Ceramics: **D. Ceramics Surface Options:**


1. Alumina (Al₂O₃, white 96%) 1. Blank ceramics (not metalized)

2. Metalized 2. Aluminum Nitride (AlN)

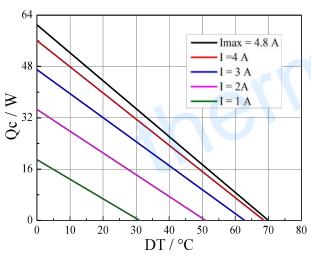
Naming for the Module

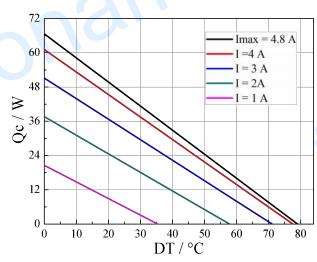
Suffix	Thickness	Flatness/	Lead wire length(mm)		
	(mm)	Parallelism (mm)	Standard/Optional length		
TF	$0:3.9 \pm 0.1$	0:0.08/0.08	150±3/Specify		
TF	$1:3.9 \pm 0.03$	1:0.03/0.03	150±3/Specify		

Eg. TF01: Thickness 3.9 ± 0.1 (mm) and Flatness 0.03 / 0.03 (mm)

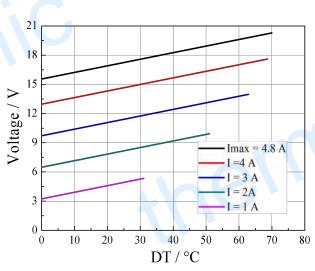
T100: BiSn (Tmelt=138°C)

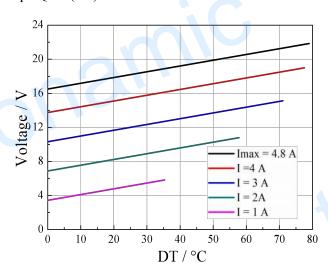
AlO: Alumina white 96%

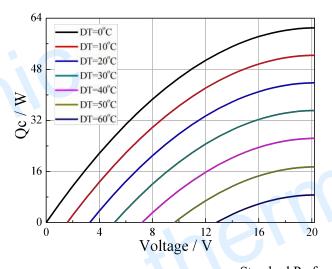

TF01: Thickness ±0.1(mm) and Flatness/Parallelism 0.025/0.025(mm)

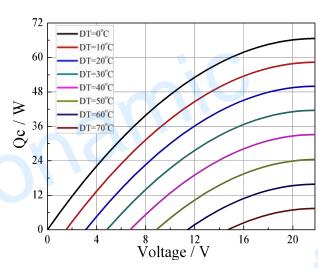

Specification of Thermoelectric Module

TEC1-16104

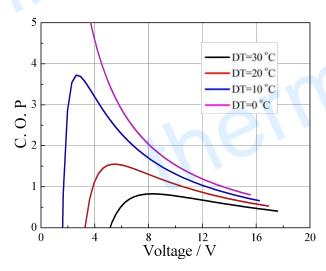

Performance Curves at Th=27 °C

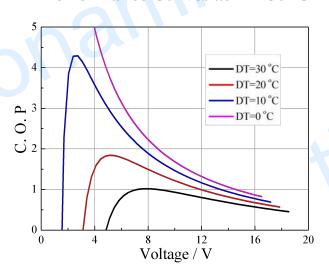

Performance Curves at Th=50 °C



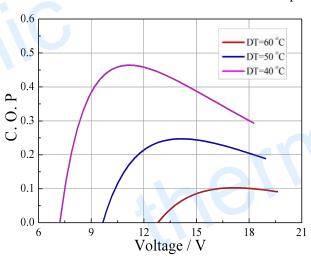

Standard Performance Graph Qc= f(DT)

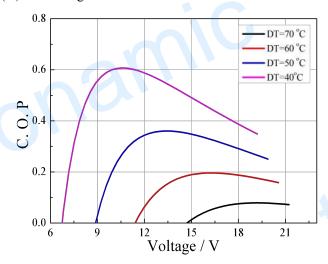
Standard Performance Graph $V=f(\Delta T)$


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-16104


Performance Curves at Th=27 °C


Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of ΔT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I_{max} or V_{max}
- Work under DC